我們擅長商業(yè)策略與用戶體驗的完美結(jié)合。
歡迎瀏覽我們的案例。
「如今,LLM(大語言模型)并不是單點突破的 —— 而是需要多個重要組件有效協(xié)同工作的系統(tǒng)。Speculative decoding 是幫助我們從系統(tǒng)角度思考的一個很好的例子?!箰鄱”ご髮W(xué)博士生符堯表示道。
圖片來自網(wǎng)絡(luò)/侵刪
符堯上述觀點評論的是特斯拉前 AI 總監(jiān)、年初重回 OpenAI 的 Andrej Karpathy 剛剛發(fā)布的一條推特。
人形機器人公司 1X Technologies 的 AI 副總裁 Eric Jang 評價道:「Karpathy 很好的解釋了 LLM 的 speculative execution。其他自回歸模型可能會以類似的方式加速。連續(xù)(擴散)模型可能從 K 步中獲益較少(可能在第 1 步后偏離猜測),但可以將其應(yīng)用于 VQ-latents 的離散代碼?!?/p>
圖片來自網(wǎng)絡(luò)/侵刪
看完上述評價,我們大概也了解了,Karpathy 說的「Speculative execution」,這是優(yōu)化技術(shù)的一類,采用這個技術(shù)的計算機系統(tǒng)會根據(jù)現(xiàn)有信息,利用空轉(zhuǎn)時間提前執(zhí)行一些將來可能用得上,也可能用不上的指令。如果指令執(zhí)行完成后發(fā)現(xiàn)用不上,系統(tǒng)會拋棄計算結(jié)果,并回退執(zhí)行期間造成的副作用(如緩存)。
為了讓大家更好的理解 Karpathy 的內(nèi)容。我們先介紹一下「Speculative decoding」方法,對后續(xù)理解更加有益,其主要用于加速大模型的推理。據(jù)了解,GPT-4 泄密報告也提到了 OpenAI 線上模型推理使用了它(不確定是否 100%)。
關(guān)于「Speculative decoding」,已有幾篇重要文獻(xiàn)可供參考,這也是 Karpathy 為了寫這則推特所參考的論文,包括谷歌今年 1 月發(fā)表的論文《Fast Inference from Transformers via Speculative Decoding》、DeepMind 今年 2 月發(fā)表的論文《Accelerating Large Language Model Decoding with Speculative Sampling》,以及谷歌等機構(gòu) 2018 年的論文《Blockwise Parallel Decoding for Deep Autoregressive Models 》 。
簡單來說,「Speculative decoding」使用兩個模型:一個是原始目標(biāo)模型稱為大模型,另一個是比原始模型小得多的近似模型稱為小模型。主要思想是先讓小模型提前解碼多個 token 進(jìn)行猜測,并將它們作為單個 batch 輸入到一個大模型中進(jìn)行審核修正,其效果和直接用大模型解碼等價。如果小模型猜測的不準(zhǔn)確,那么大型模型會放棄小模型預(yù)測的 token,繼續(xù)使用大型模型進(jìn)行解碼。
由于小模型計算量小,從而大大減少了內(nèi)存訪問需求。
介紹完「Speculative decoding」,我們再回到 Karpathy 的推特。Karpathy 是針對下面內(nèi)容回復(fù)的。
Karpathy 表示:對于 LLM 來說,「Speculative execution」 是一種極好的推理 — 時間優(yōu)化方法。
它取決于以下方面:在單個輸入 token 上分發(fā) LLM 所花費的時間與在批處理中分發(fā) K 個輸入 token 所花費的時間一樣多。產(chǎn)生這樣的原因是因為采樣嚴(yán)重受內(nèi)存限制:模型運行時的大部分工作不是在做計算,而是從 VRAM 讀取 transformer 的權(quán)重到片上緩存進(jìn)行處理。如果你要做的工作是來讀取這些權(quán)值,你可以把它們應(yīng)用到一整批輸入向量上。
但是我們不能一次性采樣一批 K 個 token,因為每 N 個 token 都取決于我們在第 N-1 步采樣的 token。由于存在串行依賴性,因此基線實現(xiàn)只是從左到右逐一進(jìn)行。
現(xiàn)在最聰明的想法是使用一個小而便宜的草稿模型(draft model),先生成 K 個 token 候選序列,即一個「草稿」。然后用大模型批量的將輸入組合在一起。速度幾乎與僅輸入一個 token 一樣快。接著從左到右遍歷模型和樣本 token 預(yù)測的 logits。任何與「草稿」一致的樣本都允許立即跳到下一個 token。如果存在分歧,那么就丟棄「草稿」并承擔(dān)一些一次性工作的成本(對「草稿」進(jìn)行采樣并為所有后續(xù) token 進(jìn)行前向傳遞)。
這種方法起作用的原因在于,很多「草稿」token 都會被接受,因為它們很容易,所以即使是更小的草稿模型也能得到它們。當(dāng)這些簡單的 token 被接受時,我們會跳過這些部分。大模型不同意的 hard token 會回落到原始速度,但由于一些額外的工作,實際上速度會慢一些。
Karpathy 表示,這個奇怪的技巧之所以有效,是因為 LLM 在推理時受到內(nèi)存限制,在對單個序列進(jìn)行采樣的 batch size=1 設(shè)置中,很大一部分本地 LLM 用例都屬于這種情況。因為大多數(shù) token 都很「簡單」。
?。?a href="http://m.jinteng090.cn">邯鄲小程序)
Andrej Karpathy:大模型有內(nèi)存限制,這個妙招挺好用 10:53:32
iPhone 16 有望部署,蘋果正評估 MLA 方案 OLED 屏幕:亮度更高、功耗更低 10:27:52
傳音 Infinix Zero 30 5G 手機發(fā)布:前攝支持 4K 視頻錄制,運存最高達(dá) 21GB 10:25:33
微軟必應(yīng)聊天增強地圖導(dǎo)航功能、移動版必應(yīng)地圖引入實時路況數(shù)據(jù) 10:20:21
微軟發(fā)布新提醒:Win11 21H2 于 10 月停止支持,敦促用戶盡快升級 10:14:02
新款 Model 3 車型上架特斯拉官網(wǎng):25.99 萬元起售,第四季度交車 10:06:05